Publication date: Sep 13, 2023
Advances in single-cell RNA sequencing (scRNA-seq) techniques have accelerated functional interpretation of disease-associated variants discovered from genome-wide association studies (GWASs). However, identification of trait-relevant cell populations is often impeded by inherent technical noise and high sparsity in scRNA-seq data. Here, we developed scPagwas, a computational approach that uncovers trait-relevant cellular context by integrating pathway activation transformation of scRNA-seq data and GWAS summary statistics. scPagwas effectively prioritizes trait-relevant genes, which facilitates identification of trait-relevant cell types/populations with high accuracy in extensive simulated and real datasets. Cellular-level association results identified a novel subpopulation of naive CD8 T cells related to COVID-19 severity and oligodendrocyte progenitor cell and microglia subsets with critical pathways by which genetic variants influence Alzheimer’s disease. Overall, our approach provides new insights for the discovery of trait-relevant cell types and improves the mechanistic understanding of disease variants from a pathway perspective.
Concepts | Keywords |
---|---|
Alzheimer | genetic variants |
Genome | GWAS |
Naive | risk genes |
Oligodendrocyte | single-cell RNA sequencing |
Progenitor | trait-relevant cell types |
Semantics
Type | Source | Name |
---|---|---|
disease | IDO | cell |
disease | MESH | COVID-19 |
disease | MESH | Alzheimer’s disease |