Publication date: Sep 20, 2023
Human angiotensin-converting enzyme 2 (hACE2) is the primary receptor for cellular entry of SARS-CoV-2 into human host cells. hACE2 is heavily glycosylated and glycans on the receptor may play a role in viral binding. Thus, comprehensive characterization of hACE2 glycosylation could aid our understanding of interactions between the receptor and SARS-CoV-2 spike (S) protein, as well as provide a basis for the development of therapeutic drugs targeting this crucial interaction. Herein, 138 N-glycan compositions were identified, most of which are complex-type N-glycans, from seven N-glycosites of hACE2. Among them, 67% contain at least one sialic acid residue. At the level of glycopeptides, the overall quantification of sialylated glycan isomers observed on the sites N322 and N546 have a higher degree of NeuAc (α2-3)Gal (over 80. 3%) than that of other N-glycosites (35. 6-71. 0%). In terms of O-glycans, 69 glycan compositions from 12 O-glycosites were identified, and especially, the C-terminus of hACE2 is heavily O-glycosylated. The terminal sialic acid linkage type of H1N1S1 and H1N1S2 are covered highly with α2,3-sialic acid. These findings could aid the investigation of the interaction between SARS-CoV-2 and human host cells.
Concepts | Keywords |
---|---|
Glycosylation | Acid |
H1n1s2 | Angiotensin |
Host | Cov |
Therapeutic | Glycan |
Viral | Glycans |
Glycosites | |
Glycosylation | |
Hace2 | |
Isomers | |
Linkage | |
Receptor | |
Sars | |
Sialic |
Semantics
Type | Source | Name |
---|---|---|
disease | IDO | site |
drug | DRUGBANK | Angiotensin II |
disease | IDO | host |