Microplastic pollution interaction with disinfectant resistance genes: research progress, environmental impacts, and potential threats.

Publication date: Feb 10, 2024

The consumption of disposable plastic products and disinfectants has surged during the global COVID-19 pandemic, as they play a vital role in effectively preventing and controlling the spread of the virus. However, microplastic pollution and the excessive or improper use of disinfectants contribute to the increased environmental tolerance of microorganisms. Microplastics play a crucial role as vectors for microorganisms and plankton, facilitating energy transfer and horizontal gene exchange. The increase in the use of disinfectants has become a driving force for the growth of disinfectant resistant bacteria (DRB). A large number of microorganisms can have intense gene exchange, such as plasmid loss and capture, phage transduction, and cell fusion. The reproduction and diffusion rate of DRB in the environment is significantly higher than that of ordinary microorganisms, which will greatly increase the environmental tolerance of DRB. Unfortunately, there is still a huge knowledge gap in the interaction between microplastics and disinfectant resistance genes (DRGs). Accordingly, it is critical to comprehensively summarize the formation and transmission routes of DRGs on microplastics to address the problem. This paper systematically analyzed the process and mechanisms of DRGs formed by microbes. The interaction between microplastics and DRGs and the contribution of microplastic on the diffusion and spread of DRGs were expounded. The potential threats to the ecological environment and human health were also discussed. Additionally, some challenges and future priorities were also proposed with a view to providing useful basis for further research.

Concepts Keywords
Bacteria DRGs
Covid Formation mechanism
Driving Interaction: Potential threats
Huge Microplastics
Pandemic

Semantics

Type Source Name
disease MESH COVID-19 pandemic
disease VO gene
disease VO Bacteria
pathway REACTOME Reproduction
disease VO Gap
disease IDO process

Original Article

(Visited 1 times, 1 visits today)