GrimAge is elevated in older adults with mild COVID-19 an exploratory analysis.

Publication date: Feb 15, 2024

COVID-19 has been contained; however, the side effects associated with its infection continue to be a challenge for public health, particularly for older adults. On the other hand, epigenetic status contributes to the inter-individual health status and is associated with COVID-19 severity. Nevertheless, current studies focus only on severe COVID-19. Considering that most of the worldwide population developed mild COVID-19 infection. In the present exploratory study, we aim to analyze the association of mild COVID-19 with epigenetic ages (HorvathAge, HannumAge, GrimAge, PhenoAge, SkinAge, and DNAmTL) and clinical variables obtained from a Mexican cohort of older adults. We found that all epigenetic ages significantly differ from the chronological age, but only GrimAge is elevated. Additionally, both the intrinsic epigenetic age acceleration (IEAA) and the extrinsic epigenetic age acceleration (EEAA) are accelerated in all patients. Moreover, we found that immunological estimators and DNA damage were associated with PhenoAge, SkinBloodHorvathAge, and HorvathAge, suggesting that the effects of mild COVID-19 on the epigenetic clocks are mainly associated with inflammation and immunology changes. In conclusion, our results show that the effects of mild COVID-19 on the epigenetic clock are mainly associated with the immune system and an increase in GrimAge, IEAA, and EEAA.

Concepts Keywords
Clocks Aging
Dnamtl COVID-19
Inflammation DNA damage
Mexican Epigenetic age acceleration
Epigenetic clocks
Immune system


Type Source Name
disease MESH COVID-19
disease MESH infection
disease VO population
disease MESH DNA damage
disease MESH inflammation
pathway REACTOME Immune System
disease MESH Long Covid

Original Article

(Visited 1 times, 1 visits today)