Biological properties of caffeine, (+)-catechin, and theobromine: an in silico study.

Publication date: Apr 01, 2024

We analyzed here the in silico biological activities of caffeine, (+)-catechin, and theobromine. For this, the PubChem database of the NIH (National Institutes of Health) was used to obtain the SMILE canonical form of the bioactive molecules, and the free software PASS Online (Prediction of Activity Spectra for Substances) from the Way2Drug portal. Also, we conducted an in vitro experiment using a chronic myeloid leukemia (CML) cell line (K562) to confirm some results found in in silico investigation. These cells were exposed to different concentrations of caffeine, (+)-catechin, and theobromine for 72 h. The results found in this in silico study suggested that caffeine, (+)-catechin, and theobromine showed excellent biological properties, such as antioxidant, anti-inflammatory, and anticarcinogenic, as well as protection against cardiovascular, diabetes, neurological, allergic, respiratory, and other therapeutic activities. These findings can be elucidated through the modulation exerted by these bioactive molecules in many biochemical pathways involved in organism homeostasis, such as free radical scavenger action, oxidoreductase inhibitor, membrane permeability inhibitor, and lipid peroxidase inhibitor. In addition, we have found here that caffeine, (+)-catechin, and theobromine have a remarkable anti-inflammatory activity which plays an important role in the therapeutic approach of COVID-19. Moreover, our in vitro findings confirmed the in silico results regarding anticancer activity since these molecules reduce cell proliferation at all tested concentrations. Therefore, since these molecules exhibit important medicinal activities, further investigations should be conducted to reveal new therapies to improve the treatments and prevention of numerous disorders and, consequently, promote human health.

Concepts Keywords
Biotech Bioactive molecules
Caffeine Computational platform
Homeostasis Medicinal properties
Leukemia Screening


Type Source Name
drug DRUGBANK Caffeine
drug DRUGBANK Cianidanol
drug DRUGBANK Theobromine
disease MESH chronic myeloid leukemia
pathway KEGG Chronic myeloid leukemia
disease IDO cell
disease IDO organism
disease MESH COVID-19

Original Article

(Visited 1 times, 1 visits today)