Machine Learning-Based Approach for Identifying Research Gaps: COVID-19 as a Case Study.

Publication date: Mar 05, 2024

Research gaps refer to unanswered questions in the existing body of knowledge, either due to a lack of studies or inconclusive results. Research gaps are essential starting points and motivation in scientific research. Traditional methods for identifying research gaps, such as literature reviews and expert opinions, can be time consuming, labor intensive, and prone to bias. They may also fall short when dealing with rapidly evolving or time-sensitive subjects. Thus, innovative scalable approaches are needed to identify research gaps, systematically assess the literature, and prioritize areas for further study in the topic of interest. In this paper, we propose a machine learning-based approach for identifying research gaps through the analysis of scientific literature. We used the COVID-19 pandemic as a case study. We conducted an analysis to identify research gaps in COVID-19 literature using the COVID-19 Open Research (CORD-19) data set, which comprises 1,121,433 papers related to the COVID-19 pandemic. Our approach is based on the BERTopic topic modeling technique, which leverages transformers and class-based term frequency-inverse document frequency to create dense clusters allowing for easily interpretable topics. Our BERTopic-based approach involves 3 stages: embedding documents, clustering documents (dimension reduction and clustering), and representing topics (generating candidates and maximizing candidate relevance). After applying the study selection criteria, we included 33,206 abstracts in the analysis of this study. The final list of research gaps identified 21 different areas, which were grouped into 6 principal topics. These topics were: “virus of COVID-19,” “risk factors of COVID-19,” “prevention of COVID-19,” “treatment of COVID-19,” “health care delivery during COVID-19,” “and impact of COVID-19. ” The most prominent topic, observed in over half of the analyzed studies, was “the impact of COVID-19. ” The proposed machine learning-based approach has the potential to identify research gaps in scientific literature. This study is not intended to replace individual literature research within a selected topic. Instead, it can serve as a guide to formulate precise literature search queries in specific areas associated with research questions that previous publications have earmarked for future exploration. Future research should leverage an up-to-date list of studies that are retrieved from the most common databases in the target area. When feasible, full texts or, at minimum, discussion sections should be analyzed rather than limiting their analysis to abstracts. Furthermore, future studies could evaluate more efficient modeling algorithms, especially those combining topic modeling with statistical uncertainty quantification, such as conformal prediction.

Open Access PDF

Concepts Keywords
Algorithms BERT
Expert BERTopic
Pandemic coronavirus
COVID
COVID-19
literature review
machine learning
natural language processing
NLP
research gap
research gaps
research topic
research topics
review methodology
review methods
SARS-CoV-2
scientific literature
text analysis
topic clustering

Semantics

Type Source Name
disease MESH COVID-19
disease VO LACK
disease VO time
disease VO data set
disease VO frequency
disease VO document
disease VO efficient
disease MESH uncertainty
disease MESH Long Covid
disease VO Gap
disease VO population
disease VO volume
disease MESH Severe Acute Respiratory Syndrome
disease MESH Middle East Respiratory Syndrome
disease VO organization
disease VO Severe acute respiratory syndrome coronavirus 2
disease IDO process
disease IDO algorithm
pathway REACTOME Immune System
disease MESH complications
disease VO effectiveness
disease IDO immune response
disease MESH Obesity
disease MESH weight loss
disease MESH death
disease VO vaccination
disease VO vaccine
disease MESH chronic diseases
disease MESH chronic hepatitis
disease MESH heart failure
disease MESH renal failure
disease MESH epilepsy
disease VO mouth
disease VO nose
disease VO protocol
disease VO dose
disease VO effective
disease VO organ
disease MESH asthma
pathway KEGG Asthma
disease MESH chronic obstructive pulmonary disease
disease MESH hypertension
disease MESH deep vein thrombosis
disease MESH pulmonary embolism
disease MESH posttraumatic stress disorder
disease MESH preterm birth
disease MESH zoonotic diseases
disease VO vaccine efficacy
disease MESH infection
disease MESH spotting
drug DRUGBANK Coenzyme M
drug DRUGBANK Carbenoxolone
drug DRUGBANK (S)-Des-Me-Ampa
drug DRUGBANK Lauric Acid
drug DRUGBANK Ribostamycin

Original Article

(Visited 1 times, 1 visits today)