High-throughput screening identifies broad-spectrum Coronavirus entry inhibitors.

High-throughput screening identifies broad-spectrum Coronavirus entry inhibitors.

Publication date: Jun 21, 2024

The COVID-19 pandemic highlighted the need for antivirals against emerging coronaviruses (CoV). Inhibiting spike (S) glycoprotein-mediated viral entry is a promising strategy. To identify small molecule inhibitors that block entry downstream of receptor binding, we established a high-throughput screening (HTS) platform based on pseudoviruses. We employed a three-step process to screen nearly 200,000 small molecules. First, we identified hits that inhibit pseudoviruses bearing the SARS-CoV-2 S glycoprotein. Counter-screening against pseudoviruses with the vesicular stomatitis virus glycoprotein (VSV-G), yielded sixty-five SARS-CoV-2 S-specific inhibitors. These were further tested against pseudoviruses bearing the MERS-CoV S glycoprotein, which uses a different receptor. Out of these, five compounds, which included the known broad-spectrum inhibitor Nafamostat, were subjected to further validation and tested against pseudoviruses bearing the S glycoprotein of the Alpha, Delta, and Omicron variants as well as bona fide SARS-CoV-2. This rigorous approach revealed an unreported inhibitor and its derivative as potential broad-spectrum antivirals.

Open Access PDF

Concepts Keywords
Antivirals Health sciences
Coronaviruses Pharmacology
Covid Virology
Downstream

Semantics

Type Source Name
disease MESH COVID-19 pandemic
disease VO Glycoprotein
disease IDO process
drug DRUGBANK Nafamostat

Original Article

(Visited 2 times, 1 visits today)