Publication date: Jun 22, 2024
Electrochemical biosensors, known for their low cost, sensitivity, selectivity, and miniaturization capabilities, are ideal for point-of-care devices. The magnetic metal-organic framework (MMOF), synthesized using the in-situ growth method, consists of ferric salt, magnetic nanoparticles, histidine, and benzene tetracarboxylic acid. MMOF was sequentially modified with aptamer-biotin and streptavidin-horseradish peroxidase, serving as a detector for spike protein and a transducer converting electrochemical signals using HO-hydroquinone on a screen-printed electrode. MMOF facilitates easy washing and homogeneous deposition on the working electrode with a magnet, enhancing sensitivity and reducing noise. The physical and electrochemical properties of the modified MMOFs were thoroughly characterized using various analytical techniques. The aptasensors’ performance achieved a detection limit of 6 pM for voltammetry and 5. 12 pM for impedance spectroscopy in human serum samples. This cost-effective, portable MMOF platform is suitable for rapid point-of-care testing for SARS-CoV-2 spike proteins.
Semantics
Type | Source | Name |
---|---|---|
drug | DRUGBANK | Histidine |
drug | DRUGBANK | Biotin |
drug | DRUGBANK | Hydroquinone |
disease | VO | effective |
disease | MESH | COVID-19 |
disease | VO | Glycoprotein |