Establishment of human post-vaccination SARS-CoV-2 standard reference sera.

Establishment of human post-vaccination SARS-CoV-2 standard reference sera.

Publication date: Jul 01, 2024

There is a critical need to understand the effectiveness of serum elicited by different SARS-CoV-2 vaccines against SARS-CoV-2 variants. We describe the generation of reference reagents comprised of post-vaccination sera from recipients of different primary vaccines with or without different vaccine booster regimens in order to allow standardized characterization of SARS-CoV-2 neutralization in vitro. We prepared and pooled serum obtained from donors who received a either primary vaccine series alone, or a vaccination strategy that included primary and boosted immunization using available SARS-CoV-2 mRNA vaccines (BNT162b2, Pfizer and mRNA-1273, Moderna), replication-incompetent adenovirus type 26 vaccine (Ad26. COV2.S, Johnson and Johnson), or recombinant baculovirus-expressed spike protein in a nanoparticle vaccine plus Matrix-M adjuvant (NVX-CoV2373, Novavax). No subjects had a history of clinical SARS-CoV-2 infection, and sera were screened with confirmation that there were no nucleocapsid antibodies detected to suggest natural infection. Twice frozen sera were aliquoted, and serum antibodies were characterized for SARS-CoV-2 spike protein binding (estimated WHO antibody binding units/ml), spike protein competition for ACE-2 binding, and SARS-CoV-2 spike protein pseudotyped lentivirus transduction. These reagents are available for distribution to the research community (BEI Resources), and should allow the direct comparison of antibody neutralization results between different laboratories. Further, these sera are an important tool to evaluate the functional neutralization activity of vaccine-induced antibodies against emerging SARS-CoV-2 variants of concern. IMPORTANCE: The explosion of COVID-19 demonstrated how novel coronaviruses can rapidly spread and evolve following introduction into human hosts. The extent of vaccine- and infection-induced protection against infection and disease severity is reduced over time due to the fall in concentration, and due to emerging variants that have altered antibody binding regions on the viral envelope spike protein. Here, we pooled sera obtained from individuals who were immunized with different SARS-CoV-2 vaccines and who did not have clinical or serologic evidence of prior infection. The sera pools were characterized for direct spike protein binding, blockade of virus-receptor binding, and neutralization of spike protein pseudotyped lentiviruses. These sera pools were aliquoted and are available to allow inter-laboratory comparison of results and to provide a tool to determine the effectiveness of prior vaccines in recognizing and neutralizing emerging variants of concern.

Concepts Keywords
Bnt162b2 2019-nCoV Vaccine mRNA-1273
Incompetent 2019-nCoV Vaccine mRNA-1273
Nanoparticle Ad26COVS1
Vaccine Ad26COVS1
Antibodies
Antibodies, Neutralizing
Antibodies, Neutralizing
Antibodies, Viral
Antibodies, Viral
BNT162 Vaccine
BNT162 Vaccine
COVID-19
COVID-19
COVID-19 Vaccines
COVID-19 Vaccines
Humans
Immunization, Secondary
Neutralization Tests
Reference reagent
Reference Standards
SARS-CoV-2
SARS-CoV-2
Spike Glycoprotein, Coronavirus
Spike Glycoprotein, Coronavirus
spike protein, SARS-CoV-2
Vaccination
Vaccine

Semantics

Type Source Name
disease VO vaccination
disease VO effectiveness
disease VO vaccine
disease VO immunization
disease IDO replication
disease VO NVX-CoV2373
disease IDO history
disease MESH SARS-CoV-2 infection
pathway REACTOME SARS-CoV-2 Infection
disease MESH infection
disease VO Lentivirus
disease VO time
disease VO immunized
disease VO Glycoprotein

Original Article

(Visited 1 times, 1 visits today)