Publication date: Jun 26, 2024
Research on the host responses to respiratory viruses could help develop effective interventions and therapies against the current and future pandemics from the host perspective. To explore the pathogenesis that distinguishes SARS-CoV-2 infections from other respiratory viruses, we performed a multi-cohort analysis with integrated bioinformatics and machine learning. We collected 3730 blood samples from both asymptomatic and symptomatic individuals infected with SARS-CoV-2, seasonal human coronavirus (sHCoVs), influenza virus (IFV), respiratory syncytial virus (RSV), or human rhinovirus (HRV) across 15 cohorts. First, we identified an enhanced cellular immune response but limited interferon activities in SARS-CoV-2 infection, especially in asymptomatic cases. Second, we identified a SARS-CoV-2-specific 3-gene signature (CLSPN, RBBP6, CCDC91) that was predominantly expressed by T cells, could distinguish SARS-CoV-2 infection, including Omicron, from other common respiratory viruses regardless of symptoms, and was predictive of SARS-CoV-2 infection before detectable viral RNA on RT-PCR testing in a longitude follow-up study. Thereafter, a user-friendly online tool, based on datasets collected here, was developed for querying a gene of interest across multiple viral infections. Our results not only identify a unique host response to the viral pathogenesis in SARS-CoV-2 but also provide insights into developing effective tools against viral pandemics from the host perspective.