Neuropilin-1 Protein May Serve as a Receptor for SARS-CoV-2 Infection: Evidence from Molecular Dynamics Simulations.

Publication date: Jul 15, 2024

The binding of the virus to host cells is the first step in viral infection. Human cell angiotensin converting enzyme 2 (ACE2) is the most popular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), while other receptors have recently been observed in experiments. Neuropilin-1 protein (NRP1) is one of them, but the mechanism of its binding to the wild type (WT) and different variants of the virus remain unclear at the atomic level. In this work, all-atom umbrella sampling simulations were performed to clarify the binding mechanism of NRP1 to the spike protein fragments 679-685 of the WT, Delta, and Omicron BA. 1 variants. We found that the Delta variant binds most strongly to NRP1, while the affinity for Omicron BA. 1 slightly decreases for NRP1 compared to that of WT, and the van der Waals interaction plays a key role in stabilizing the studied complexes. The change in the protonation state of the His amino acid results in different binding free energies between variants. Consistent with the experiment, decreasing the pH was shown to increase the binding affinity of the virus to NRP1. Our results indicate that Delta and Omicron mutations not only affect fusogenicity but also affect NRP1 binding. In addition, we argue that viral evolution does not further improve NRP1 binding affinity which remains in the μM range but may increase immune evasion.

Concepts Keywords
Coronavirus Affinity
Free Binding
Host Cov
Molecular Delta
Severe Infection
Neuropilin
Nrp1
Omicron
Receptor
Sars
Simulations
Variants
Viral
Virus
Wt

Semantics

Type Source Name
disease MESH SARS-CoV-2 Infection
pathway REACTOME SARS-CoV-2 Infection
disease IDO host
disease MESH viral infection
disease IDO cell
drug DRUGBANK Angiotensin II
disease VO Severe acute respiratory syndrome coronavirus 2

Original Article

(Visited 3 times, 1 visits today)