Competitive Interaction of the SGFRKMAF Peptide with 3CLpro Dimerization Intermediates: A Brownian Dynamics Investigation.

Competitive Interaction of the SGFRKMAF Peptide with 3CLpro Dimerization Intermediates: A Brownian Dynamics Investigation.

Publication date: Jul 19, 2024

The SGFRKMAF peptide is known to inhibit the dimerization of 3CLpro monomers, which is essential for SARS-CoV-2 replication. The mechanism behind this, however, is largely unknown. In this work, we used Brownian dynamics simulations to compare and contrast 3CLpro monomer-monomer interactions and 3CLpro monomer-SGFRKMAF peptide interactions. We found that formation of the 3CLpro wild-type dimer could potentially involve formation of three intermediates that are primarily stabilized by G11-G124, S1-S301, and T118-G278 interactions. Analysis of 3CLpro monomer interaction with the SGFRKMAF peptide, however, revealed the presence of eight basins of interactions where the peptide assumes the highest local densities at the 3CLPro monomer surface. The second highest-density basin was found to coincide with the interface region of the wild-type 3CLpro dimer, thereby directly blocking the 3CLpro dimer-dimer interactions. The other basins, however, were found to lie far from the interface region. Notably, we found that only 6% of the BD trajectories end up directly into the basin at the interface region and ∼39% of the trajectories end up into those basins lying away from the interface region, indicating a greater role for peptide binding at sites away from the dimer interface region. Importantly, the locations of the basins lying away from the interface were found to coincide with the 3CLpro residues involved in stabilization of the 3CLpro monomer-monomer intermediates. Given that the rate constant of the peptide reaching the monomer surface was found to be almost an order of magnitude higher than the rate constant of monomer-monomer association, the SGFRKMAF peptide has the potential to inhibit dimerization of 3CLpro monomers not only through blocking the interface region but also through blocking the formation of the intermediates involved in the dimerization process. This could potentially open new avenues for 3CLpro dimerization inhibitors that transcend traditional X-ray-based discovery approaches.

Concepts Keywords
Competitive Basins
G124 Blocking
Lying Brownian
Peptide Dimer
Phys Dimerization
Dynamics
Formation
Found
Inhibit
Interaction
Interactions
Intermediates
Monomer
Peptide
Region

Semantics

Type Source Name
disease IDO replication
disease IDO process

Original Article

(Visited 1 times, 1 visits today)