Clusters of long COVID among patients hospitalized for COVID-19 in New York City.

Clusters of long COVID among patients hospitalized for COVID-19 in New York City.

Publication date: Jul 25, 2024

Recent studies have demonstrated that individuals hospitalized due to COVID-19 can be affected by “long-COVID” symptoms for as long as one year after discharge. Our study objective is to identify data-driven clusters of patients using a novel, unsupervised machine learning technique. The study uses data from 437 patients hospitalized in New York City between March 3rd and May 15th of 2020. The data used was abstracted from medical records and collected from a follow-up survey for up to one-year post-hospitalization. Hospitalization data included demographics, comorbidities, and in-hospital complications. The survey collected long-COVID symptoms, and information on general health, social isolation, and loneliness. To perform the analysis, we created a graph by projecting the data onto eight principal components (PCs) and running the K-nearest neighbors algorithm. We then used Louvain’s algorithm to partition this graph into non-overlapping clusters. The cluster analysis produced four clusters with distinct health and social connectivity patterns. The first cluster (n = 141) consisted of patients with both long-COVID neurological symptoms (74%) and social isolation/loneliness. The second cluster (n = 137) consisted of healthy patients who were also more socially connected and not lonely. The third cluster (n = 96) contained patients with neurological symptoms who were socially connected but lonely, and the fourth cluster (n = 63) consisted entirely of patients who had traumatic COVID hospitalization, were intubated, suffered symptoms, but were socially connected and experienced recovery. The cluster analysis identified social isolation and loneliness as important features associated with long-COVID symptoms and recovery after hospitalization. It also confirms that social isolation and loneliness, though connected, are not necessarily the same. Physicians need to be aware of how social characteristics relate to long-COVID and patient’s ability to cope with the resulting symptoms.

Open Access PDF

Concepts Keywords
Graph Cluster analysis
Hospitalization COVID-19
Loneliness Loneliness
Neighbors Long-COVID
Running Social isolation

Semantics

Type Source Name
disease MESH long COVID
disease MESH COVID-19
disease MESH complications
disease MESH loneliness
disease IDO algorithm
disease VO USA
disease VO organ
disease IDO acute infection
disease VO organization
disease MESH infection
disease VO time
disease IDO intervention
drug DRUGBANK Esomeprazole
disease MESH comorbidity
disease MESH hypertension
disease MESH coronary artery disease
disease MESH cancer
disease MESH Hepatitis
disease MESH cirrhosis
disease MESH lung disease
disease MESH ESRD
disease MESH acute kidney injury
disease MESH embolism
disease IDO disposition
disease MESH death
disease IDO process
drug DRUGBANK Coenzyme M
disease MESH chest pain
disease VO report
drug DRUGBANK Tropicamide
disease MESH septic shock
disease MESH pneumonia
disease MESH arrythmia
disease IDO symptom
drug DRUGBANK Fenamole
drug DRUGBANK Indoleacetic acid
disease MESH clinical course
disease MESH critically ill
disease MESH influenza
disease VO population
disease MESH heart failure

Original Article

(Visited 2 times, 1 visits today)