Pan-beta-coronavirus subunit vaccine prevents SARS-CoV-2 Omicron, SARS-CoV, and MERS-CoV challenge.

Publication date: Aug 27, 2024

Three highly pathogenic coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, belonging to the genus beta-CoV, have caused outbreaks or pandemics. SARS-CoV-2 has evolved into many variants with increased resistance to the current vaccines. Spike (S) protein and its receptor-binding domain (RBD) fragment of these CoVs are important vaccine targets; however, the RBD of the SARS-CoV-2 Omicron variant is highly mutated, rending neutralizing antibodies elicited by ancestral-based vaccines targeting this region ineffective, emphasizing the need for effective vaccines with broad-spectrum efficacy against SARS-CoV-2 variants and other CoVs with pandemic potential. This study describes a pan-beta-CoV subunit vaccine, Om-S-MERS-RBD, by fusing the conserved and highly potent RBD of MERS-CoV into an RBD-truncated SARS-CoV-2 Omicron S protein, and evaluates its neutralizing immunogenicity and protective efficacy in mouse models. Om-S-MERS-RBD formed a conformational structure, maintained effective functionality and antigenicity, and bind efficiently to MERS-CoV receptor, human dipeptidyl peptidase 4, and MERS-CoV RBD or SARS-CoV-2 S-specific antibodies. Immunization of mice with Om-S-MERS-RBD and adjuvants (Alum plus monophosphoryl lipid A) induced broadly neutralizing antibodies against pseudotyped MERS-CoV, SARS-CoV, and SARS-CoV-2 original strain, as well as T-cell responses specific to RBD-truncated Omicron S protein. Moreover, the neutralizing activity against SARS-CoV-2 Omicron subvariants was effectively improved after priming with an Omicron-S-RBD protein. Adjuvanted Om-S-MERS-RBD protein protected mice against challenge with SARS-CoV-2 Omicron variant, MERS-CoV, and SARS-CoV, significantly reducing viral titers in the lungs. Overall, these findings indicated that Om-S-MERS-RBD protein could develop as an effective universal subunit vaccine to prevent infections with MERS-CoV, SARS-CoV, SARS-CoV-2, and its variants. Coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, the respective causative agents of coronavirus disease 2019, SARS, and MERS, continually threaten human health. The spike (S) protein and its receptor-binding domain (RBD) fragment of these CoVs are critical vaccine targets. Nevertheless, the highly mutated RBD of SARS-CoV-2 variants, especially Omicron, significantly reduces the efficacy of current vaccines against SARS-CoV-2 variants. Here a protein-based pan-beta-CoV subunit vaccine is designed by fusing the potent and conserved RBD of MERS-CoV into an RBD-truncated Omicron S protein. The resulting vaccine maintained effective functionality and antigenicity, induced broadly neutralizing antibodies against all of these highly pathogenic human CoVs, and elicited Omicron S-specific cellular immune responses, protecting immunized mice from SARS-CoV-2 Omicron, SARS-CoV, and MERS-CoV infections. Taken together, this study rationally designed a pan-beta-CoV subunit vaccine with broad-spectrum efficacy, which has the potential for development as an effective universal vaccine against SARS-CoV-2 variants and other CoVs with pandemic potential.

Concepts Keywords
Antibodies broadly neutralizing activity
Coronaviruses coronavirus
Ineffective cross-protective efficacy
Lipid receptor-binding domain
SARS-CoV-2
spike

Semantics

Type Source Name
disease VO subunit vaccine
disease VO vaccine
disease VO ineffective
disease VO effective
disease VO immunization
disease IDO cell
disease MESH infections
disease MESH coronavirus disease 2019
disease VO immunized

Original Article

(Visited 2 times, 1 visits today)