Modelling multiplex testing for outbreak control.

Modelling multiplex testing for outbreak control.

Publication date: Oct 01, 2024

During the SARS-CoV-2 pandemic, polymerase chain reaction (PCR) and lateral flow device (LFD) tests were frequently deployed to detect the presence of SARS-CoV-2. Many of these tests were singleplex, and only tested for the presence of a single pathogen. Multiplex tests can test for the presence of several pathogens using only a single swab, which can allow for: surveillance of more pathogens, targeting of antiviral interventions, a reduced burden of testing, and lower costs. Test sensitivity however, particularly in LFD tests, is highly conditional on the viral concentration dynamics of individuals. To inform the use of multiplex testing in outbreak detection it is therefore necessary to investigate the interactions between outbreak detection strategies and the differing viral concentration trajectories of key pathogens. Viral concentration trajectories are estimated for SARS-CoV-2, and Influenza A/B. Testing strategies for the first five symptomatic cases in an outbreak are then simulated and used to evaluate key performance indicators. Strategies that use a combination of multiplex LFD and PCR tests achieve; high levels of detection, detect outbreaks rapidly, and have the lowest burden of testing across multiple pathogens. Influenza B was estimated to have lower rates of detection due to its modelled viral concentration dynamics. DATA AVAILABILITY STATEMENT: The SARS-CoV-2 viral load trajectory data may be accessed by contacting Killingley et. al. The influenza A/B viral load trajectory may be accessed at https://github. com/bcowling/pediatric-vaccine-trial/tree/master/data.

Concepts Keywords
Master Detection
Pandemic Influenza
Pcr Lateral flow device
Tree LFD
Vaccine Multiplex
Outbreak
PCR
Polymerase Chain Reaction
SARS-CoV-2
Test sensitivity
Testing
Viral concentration

Semantics

Type Source Name
disease IDO pathogen
pathway KEGG Influenza A
disease MESH Influenza
disease MESH viral load
drug DRUGBANK Coenzyme M

Original Article

(Visited 1 times, 1 visits today)