Publication date: Oct 22, 2024
The complement system is a vital anti-microbial defence mechanism against circulating pathogens. Excessive complement activation can have deleterious outcomes for the host and is consequently tightly modulated by a set of membrane-associated and fluid-phase regulators of complement activation (RCAs). Here, we demonstrate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks host cellular RCA members CD55 and CD59 and serum-derived Factor H (FH) to resist antibody-dependent complement-mediated lysis triggered by immunised human sera. Blockage of the biological functions of virion-associated CD55 and CD59 and competition of FH recruitment with functionally inactive recombinant FH-derived short consensus repeats SCR18-20 restore SARS-CoV-2 complement sensitivity in a synergistic manner. Moreover, complement-mediated virolysis is dependent on classical pathway activation and does not occur in the absence of virus-specific antibodies. Altogether, our findings present an intriguing immune escape mechanism that provides novel insights into the immunopathology observed in severe coronavirus disease 2019 (COVID-19).
Concepts | Keywords |
---|---|
Antibodies | antiviral immunity |
Cd55 | complement |
Coronavirus | immune evasion |
Hijacks | SARS-CoV-2 |
Inactive |
Semantics
Type | Source | Name |
---|---|---|
disease | IDO | host |
disease | MESH | coronavirus disease 2019 |