Publication date: Oct 22, 2024
Cell surface cortical actin is a regulatory target for viral infection. We aimed to investigate the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on host cell cortical stiffness, an indicator of cortical actin structure. The receptor-binding domain (RBD) of SARS-CoV-2 Spike (S) protein induced a reduction in cortical stiffness in ACE2-expressing cells. The interaction of RBD with ACE2 caused the inactivation of Ezrin/Radixin/Moesin (ERM) proteins. We further investigated the effects of the RBD of SARS-CoV-2 Omicron variants, BA. 1 and BA. 5. These RBDs influenced cortical stiffness depending on their affinity for ACE2. Our study provides the first evidence that the interaction of the SARS-CoV-2 S protein with ACE2 induces mechanobiological signals and attenuates the cortical actin.
Semantics
Type | Source | Name |
---|---|---|
disease | MESH | viral infection |
disease | MESH | infection |
disease | IDO | protein |
disease | IDO | cell |
disease | MESH | COVID-19 |