Antibody and Aptamer-Based Magnetic-Graphene Oxide Desorption (M-GOD) Quantum Dot Assays for Rapid and Sensitive Detection of SAR-CoV-2.

Publication date: Feb 10, 2025

Rapid detection of respiratory diseases using a noninvasive bind-and-detect breath test could shift the future of rapid diagnostics. Commercially available biotinylated anti-SARS-CoV-2 spike (S) protein antibody was conjugated to streptavidin-coated quantum dots, purified, and adsorbed onto magnetic-graphene oxide (M-GO) flakes to quench the conjugate. When inactivated SARS-CoV-2 was added at increasing levels, the antibody-quantum dot conjugates desorbed from the M-GO as a function of virus concentration with an apparent limit of detection ~ 9,600 inactivated virus particles within 2-5 min in phosphate-buffered saline (PBS) plus 10 mM Mg assessed by a spectrofluorometer. A similar fluorescence response was obtained using a published biotinylated DNA aptamer sequence designated MSA52 and inactivated SARS-CoV-2 in PBS plus 5 mM Mg. Concentrations of Mg greater than 5 mM diminished the aptamer magnetic-graphene oxide desorption (M-GOD) assay performance, perhaps by altering the aptamer’s 3-dimensional conformation and ability to bind the virus. As reported previously, the MSA52 aptamer assay demonstrated reasonable specificity for variants of SARS-CoV-2 and significantly less intense detection of inactivated Influenza A and Respiratory Syncytial Virus (RSV) in the M-GOD assay format. This rapid and sensitive detection of inactivated SARS-CoV-2 in clear PBS buffer bodes well for the ultimate goal of rapid homogeneous bind-and-detect detection of COVID and other viral respiratory pathogens in human breath condensates and other easily accessible body fluids.

Concepts Keywords
Easily Antibody
Inactivated Aptamer
Influenza COVID
Pbs Graphene oxide
Spectrofluorometer Magnetic
Quantum dot
SARS-CoV-2

Semantics

Type Source Name
disease MESH respiratory diseases
disease IDO protein
drug DRUGBANK Phosphate ion
disease IDO assay
pathway KEGG Influenza A

Original Article

(Visited 1 times, 1 visits today)