Publication date: Jun 01, 2025
Owing to fast SARS-CoV-2 mutations, biosensors employing antibodies as biorecognition elements have presented problems with sensitivity and accuracy. To face these challenges, antibodies can be replaced with the human angiotensin converting enzyme 2 (ACE-2), where it has been shown that the affinity between ACE-2 and the receptor binding domain (RBD) increases with the emergence of new variants. Herein, we report on Ni-doped ZnO nanorod electrochemical biosensors employing an ACE-2 peptide (IEEQAKTFLDKFNHEAEDLFYQS-NH) as a biorecognition element for detecting Spike (S) Wild-Type (WT) protein. The electrode was fully characterized in terms of electrochemical and physical properties. The sensor showed high cross reactivity with Spike protein B. 1.1. 7 and Spike protein B. 1.351. Still, there was no cross reactivity with the Nucleocapsid protein WT, showing that the biosensor can identify ancestral WT S protein and S protein variants of concern. The device exhibited a LOD of 60. 13 ng mL across an S protein WT concentration range from 200 ng mL to 1000 ng mL and a LOQ of 182. 22 ng mL. The calculated sensitivity and specificity were 88. 88 and 100 %, respectively. These results proved that the Ni-ZnO sensor has promising prospects for SARS-CoV-2 detection and diagnosis of other viruses, employing peptides as biorecognition elements.
Open Access PDF
Semantics
Type | Source | Name |
---|---|---|
disease | IDO | protein |
disease | MESH | COVID-19 |
drug | DRUGBANK | Zinc oxide |