Publication date: Jun 20, 2025
Angiotensin-converting enzyme 2 (ACE2) receptor plays a pivotal role in the infection of several coronaviruses, including SARS-CoV and SARS-CoV-2. We combined computational and experimental protein engineering approaches to develop ACE2-YHA, a soluble, high-affinity ACE2 decoy with pan-coronavirus preventive and therapeutic potential. Leveraging native human ACE2-SARS-CoV/SARS-CoV-2 receptor binding domain (RBD) complex homology models, we employed in silico site-saturation mutagenesis to predict key ACE2-RBD interacting residues. Subsequent generation of ACE2 mutants and high-throughput screening identified specific ACE2 residue substitutions that enhanced binding to both SARS-CoV and SARS-CoV-2 RBDs. The triple mutant ACE2-YHA demonstrated significantly enhanced binding affinity to SARS-CoV, SARS-CoV-2, and bat SARSr-CoVs’ RBDs. It effectively neutralized SARS-CoV and numerous SARS-CoV-2 variants with picomolar IC50s in pseudotyped virus assays. Notably, ACE2-YHA displayed potent neutralization against major variants of concern, including Delta and Omicron, in human airway epithelia, positioning it as a promising universal decoy for current and future ACE2-binding coronavirus outbreaks.
Open Access PDF
Concepts | Keywords |
---|---|
Bat | Biochemistry |
Combinatorial | Biological sciences |
Coronaviruses | Microbiology |
Epidemiology | Natural sciences |
Mutants | Virology |
Semantics
Type | Source | Name |
---|---|---|
disease | MESH | coronavirus infections |
disease | IDO | role |
disease | MESH | infection |
disease | IDO | protein |
disease | IDO | site |